翻訳と辞書
Words near each other
・ Heavy Traffic
・ Heavy Traffic (album)
・ Heavy Traffic (soundtrack)
・ Heavy traffic approximation
・ Heavy Transport Helicopter
・ Heavy Trash
・ Heavy Trash (album)
・ Heavy Unit
・ Heavy Vegetable
・ Heavy Vehicles Factory
・ Heavy warmblood
・ Heavy water
・ Heavy Water and Other Stories
・ Heavy Water Board
・ Heavy Water Components Test Reactor
Heavy water reactor
・ Heavy Weapon
・ Heavy weapons platoon
・ Heavy Weather
・ Heavy Weather (album)
・ Heavy Weather (film)
・ Heavy Weather (Sterling novel)
・ Heavy Weather (Wodehouse novel)
・ Heavy Weight Champ
・ Heavy Winged
・ Heavy Woollen District
・ Heavy Young Heathens
・ Heavy!!!
・ Heavy, Left-Handed and Candid
・ Heavy-browed mouse opossum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Heavy water reactor : ウィキペディア英語版
Heavy water reactor

A pressurized heavy-water reactor (PHWR) is a nuclear power reactor, commonly using unenriched natural uranium as its fuel, that uses heavy water (deuterium oxide D2O) as its coolant and moderator. The heavy water coolant is kept under pressure, allowing it to be heated to higher temperatures without boiling, much as in a pressurized water reactor. While heavy water is significantly more expensive than ordinary light water, it creates greatly enhanced neutron economy, allowing the reactor to operate without fuel-enrichment facilities (offsetting the additional expense of the heavy water) and enhancing the ability of the reactor to make use of alternate fuel cycles.
==Purpose of using heavy water==

The key to maintaining a nuclear reaction within a nuclear reactor is to use the neutrons released during fission to stimulate fission in other nuclei. With careful control over the geometry and reaction rates, this can lead to a self-sustaining chain reaction, a state known as "criticality".
Natural uranium consists of a mixture of various isotopes, primarily 238U and a much smaller amount (about 0.72% by weight) of 235U. 238U can only be fissioned by neutrons that are relatively energetic, about 1 MeV or above. No amount of 238U can be made "critical", however, since it will tend to parasitically absorb more neutrons than it releases by the fission process. 235U, on the other hand, can support a self-sustained chain reaction, but due to the low natural abundance of 235U, natural uranium cannot achieve criticality by itself.
The "trick" to making a working reactor is to slow some of the neutrons to the point where their probability of causing nuclear fission in 235U increases to a level that permits a sustained chain reaction in the uranium as a whole. This requires the use of a neutron moderator, which absorbs some of the neutrons' kinetic energy, slowing them down to an energy comparable to the thermal energy of the moderator nuclei themselves (leading to the terminology of "thermal neutrons" and "thermal reactors"). During this slowing-down process it is beneficial to physically separate the neutrons from the uranium, since 238U nuclei have an enormous parasitic affinity for neutrons in this intermediate energy range (a reaction known as "resonance" absorption). This is a fundamental reason for designing reactors with discrete solid fuel separated by moderator, rather than employing a more homogeneous mixture of the two materials.
Water makes an excellent moderator; the hydrogen atoms in the water molecules are very close in mass to a single neutron, and the collisions thus have a very efficient momentum transfer, similar conceptually to the collision of two billiard balls. However, despite being a good moderator, water is relatively effective at absorbing neutrons. Using water as a moderator will absorb so many neutrons that there will be too few left to react with the small amount of 235U in the fuel, again precluding criticality in natural uranium. Instead, in order to fuel a light-water reactor, first the amount of 235U in the uranium must be increased, producing enriched uranium, which generally contains between 3% and 5% 235U by weight (the waste from this process is known as depleted uranium, consisting primarily of 238U). In this enriched form there ''is'' enough 235U to react with the water-moderated neutrons to maintain criticality.
One complication of this approach is the requirement to build a uranium enrichment facility, which are generally expensive to build and operate. They also present a nuclear proliferation concern; the same systems used to enrich the 235U can also be used to produce much more "pure" weapons-grade material (90% or more 235U), suitable for producing a nuclear bomb. This is not a trivial exercise by any means, but feasible enough that enrichment facilities present a significant nuclear proliferation risk.

An alternative solution to the problem is to use a moderator that does ''not'' absorb neutrons as readily as water. In this case potentially all of the neutrons being released can be moderated and used in reactions with the 235U, in which case there ''is'' enough 235U in natural uranium to sustain criticality. One such moderator is heavy water, or deuterium-oxide. Although it reacts dynamically with the neutrons in a similar fashion to light water (albeit with less energy transfer on average, given that heavy hydrogen, or deuterium, is about twice the mass of hydrogen), it already has the extra neutron that light water would normally tend to absorb.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heavy water reactor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.